The magnetostriction of $Pd_{97}Fe_{03}$ is linear in H above H ~ 5 kOe, in accordance with Eq. (3) when μ is assumed independent of H. The slope of this linear variation, together with the measured saturation magnetization, gives $\partial \ln \mu / \partial \ln V = -0.06 \pm 0.01$. The non-linear magnetostriction below H ~ 5 kOe is characteristic of these alloys in the field and temperature range where their magnetization is also appreciably field-dependent.⁶ In sample $Pd_{99.7}Fe_{00.3}$ this nonlinear field-dependence persists up to the highest fields at 4.2° K, since this is close to the Curie temperature of the alloy. However at 1.7° K a satisfactory linear variation over a wide field range is obtained as shown in Fig. 1.

 \sim

The resultant values of $\partial \ln\mu/\partial \ln V$ for these alloys and also for $Pd_{99}Fe_{01}$, whose magnetostriction is not shown in Fig. 1, are listed in Table 1. The values of JX/(1+JX)for substitution in Eq. (2) were obtained from the measured saturation magnetization for each alloy by taking $\mu_0 = 3.3 \mu_B$ for the local moment on an Fe site measured by large-angle neutron scattering.⁷

The resistivity of the most dilute PdFe alloy has a discontinuity in the temperature dependence near the Curie temperature T_c , as shown in Fig. 2. Curves obtained at atmospheric pressure and at high pressure in different apparatus⁸ show that the discontinuity associated with T_c decreases at a rate $dT_c/dP = -4 \pm 4 \times 10^{-6}$ °K bar⁻¹. The corresponding value of $dlnT_c/dlnV$ is given in Table 1, and dlnJ/dlnVis evaluated by use of Eq. (5).

- 4 -